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Dynamic buckling of thin-walled cylindrical shells under radial impact pressures randomly
distributed in the circumferential direction is investigated by extending widely-used Don-
nell’s shell theory. The buckling model proposed here specifically includes nonlinear terms
in the geometrical equation and the curvature change due to significant variation of the shell
radius. The finite difference method is adopted to solve the equations, and a parameter is
defined to describe the buckling degree of the shell. Numerical results show that nonlinear
terms from Green’s strain tensors and the change of curvature are important for shell large
deformation. Pressure characteristics, materials and thickness of the cylindrical shell affect
its buckling behavior remarkably.
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1. Introduction

As a common structure, thin-walled cylindrical shells are extensively used in the field of
aerospace, navigation and mining industries (Kumar et al., 2011; Sahu and Datta, 2007; Teng,
1996). In the shell structures, buckling usually becomes a dominated failure pattern rather than
damage due to material strength, which is often related to deformation of a structure experienc-
ing a sudden and distinct change when a loading reaches or exceeds a critical value. Buckling
analysis of cylindrical shells has been an old but significant topic for a long time and works deal-
ing with this problem are numerous. In static buckling problems, the bearing capacity or critical
loading at which the structure buckles is evaluated (Hutchinson, 1965, 2016), however in dy-
namic buckling problems take the inertia effect as an additive and important factor (Karagiozova
and Alves, 2008).
Although dynamic buckling of thin-walled shells under axial loadings has been studied a

lot (An et al., 2016; Darabi and Ganesan, 2016; Xu et al., 2006), such a problem of shells
under radial pressures received relatively less attention. It should be noted that when thin-
-walled metallic cylindrical shells are subjected to explosive loadings having significant radial
components inward, dynamic buckling becomes an important design consideration. Examples
include magnetic confinement devices for producing intense transient magnetic fields (Bykov
and Dolotenko, 2015), shape-charge weapons (Saran et al., 2013) or oil well perforators (Farid,
2012) to produce high-velocity metallic jets. Ideally, if the pressure uniformly distributed around
the outer surface of a circular cylindrical shell, the shell can move inward without buckling. The
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cross section of the shell could remain circular with a decrease of radius over time. However,
practically non-axisymmetric motion usually occurs and wrinkles appear on the deformed shells.

The dynamic buckling of thin-walled shells under radial pressures can be caused by defects
or disturbances that exist in the manufacturing or application process of the shell (Jones and
Okawa, 1976). Geometrically, the initially non-circular shape is frequently regarded as the main
factor to make the shell buckle (Ben-Haim, 1993; Elishakoff, 2000; Lindberg, 1992a,b; Wei and
Batra, 2006). As to the external loadings, Kumar et al. (2015) studied stability of thin-walled
cylindrical shells subjected to radial pressures distributed uniformly in the circumferential di-
rection and vibrating over time. In 1987, Lindberg and Florence (1987) systematically studied
dynamic pulse buckling behavior of thin-walled cylindrical shells under radial impulses. The
impulse effect was equivalently transformed into the initial velocity of the wall with the form
of white noise in the circumferential direction. Gu et al. (1996) also discussed dynamic plas-
tic buckling of cylindrical shells and rings subjected to initially non-axisymmetric impulsive
velocities.

In order to describe deformation behavior of thin-walled cylindrical shells, different models
on the premise of various hypotheses have been proposed over the years. Several shell theo-
ries, including Donnell’s, Novozhilov, Flügge-Luré-Byrne, and Sanders and Koiter have been
developed and widely employed (Amabili and Päıdoussis, 2003). Amabili (2008) provided a
comprehensive overview on these theories. Kumar et al. (2015) studied stability of thin-walled
cylindrical shells subjected to radial pressures by adopting the Flügge-Luré-Byrne shell theory.
But nonlinear terms in the strain-displacement relations were not included in the above works.
Xue et al. (2013) extended Donnell’s shell theory by considering the effect of large deformation
on curvature of the shell, and analyzed the large deformation problem of long shells. Lindberg
and Florence (1987) developed the equation of motion without any nonlinear terms according
to Donnell’s theory to study the dynamic pulse buckling of a cylindrical shell under impulsive
loadings. Besides, only the raidal displacement was maintained in Lindberg’s equations (Lind-
berg and Florence, 1987). However, linear geometrical equations are limited to infinitesimal
deformations, and nonlinear effects due to large derformations are definitely necessary to de-
scribe buckling behavior accurately. Another nonlinearity originating from material properties
of non-homogeneous materials, such as laminated composite materials and functionally graded
materials (Kundalwal and Shingare, 2020; Suresh Kumar et al., 2017), is temporarily out of
concern in the current work.

A new buckling model taking nonlinear terms in the geometrical equation and curvature
change due to large deformation into account is proposed to investigate the dynamic buckling
of a thin-walled cylindrical shell under radial impact pressures randomly distributed in the
circumferential direction. The nonlinear partial differential equation (PDE) is solved by the finite
difference method (FDM). Subsequently, the effects of pressure characteristics, shell material and
thickness on the buckling behavior are discussed.

2. Basic equations

As illustrated in Fig. 1, a thin-walled cylindrical shell with radius R and thickness h is con-
sidered. The middle surface where the origin of the coordinate system is located divides the
thickness of the shell equally. u1, u2 and u3 are displacements of a generic point of the shell
with coordinates (x, θ, z) along the axial, circumferential and radial directions, respectively. The
displacements of a point in the middle surface along corresponding directions are denoted by u,
v and w. In this paper, the outer surface of the shell is subjected to an impact pressure that is
randomly distributed along the circumferential direction. The dynamic buckling is investigated
by considering non-linear effects of large deformation within Donnell’s theory.
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Fig. 1. A thin-walled cylindrical shell

The following assumptions are adopted to study the buckling:

(H1) The shell is thin, namely, h/R ¬ 1/10 (Lindberg and Florence, 1987).

(H2) The Kirchhoff-Love shell assumption holds, that is stresses in the direction normal to the
shell middle surface are negligible, and strains vary linearly along the thickness.

(H3) The cylindrical shell is infinitely long. Therefore, all the quantities along the axial direction
as well as the axial displacement can be regarded as constant.

Based on assumption (H2), the displacements of a generic point in the shell can be expressed in
terms of the displacements of a point in the mid-surface which shares the same radial line with
the generic point, as

u1 = u(x, θ)− zΘ1 u2 = v(x, θ)− zΘ2 u3 = w(x, θ) (2.1)

where the quantities Θ1 and Θ2 involve the mid-surface displacements and their derivatives, and
different shell theories may propose different expressions for them.
For large deformation problems, the geometrical equations in terms of nonlinear Green’s

strain tensor should be used instead of Cauchy’s strain tensor. In cylindrical coordinates, Green’s
strain components, εxx, εθθ and γxθ are
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(2.2)

where ρr = R + z. Substituting Eqs. (2.2) into Eqs. (2.1), the strain components are rewritten
and abbreviated as

εxx = εx,0 + zkx εθθ = εθ,0 + zkθ γxθ = γxθ,0 + zkxθ (2.3)

where εx,0, εθ,0 and γxθ,0 are corresponding strain components of the middle surface, while kx, kθ
and kxθ are changes of curvature and torsion of the middle surface. The shell theories distinguish
from each other by the expression Θ1 and Θ2 in Eqs. (2.1) based on different deformation
assumptions. In Donnell’s shell theory, Θ1 = ∂w/∂x, Θ2 = ∂w/R∂θ, and the variations of the
middle surface in Eqs. (2.3) are
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and

kx = −
∂2w

∂x2
kθ = −

∂2w

R2∂θ2
kxθ = −2

∂2w

R∂x∂θ
(2.5)

In the cylindrical coordinate system, the equations of motion with respect to the original con-
figuration are (Kumar et al., 2015)

∂Txx
∂x
+
∂Tθx
ρr∂θ

+
∂Tzx
∂z
+
Tzx
ρr
+X = 0
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+ Z = 0

(2.6)

where X, Y and Z are the sum of the body force and inertia force along x, θ, z directions,
respectively. Tij (i, j = x, θ, z) are the components of the first Piola-Kirchhoff (1st P-K) stress
tensor, which can be expressed in terms of the symmetric second Piola-Kirchhoff (2nd P-K)
stresses σij by the relation

Tij =
3∑

k=1

σik
∂aj
∂xk

(2.7)

where x1 = x, x2 = Rθ and x3 = z. ai = xi+ ui, (i = 1, 2, 3) is the coordinate of a generic point
inside the deformed shell. Here, (i = 1, 2, 3) corresponds to the direction (x, θ, z), respectively.
With the help of Eq. (2.7), the equations of motion can be expressed in terms of the 2nd P-K
stress. Then, integrating the new equations of motion through thickness of the shell leads to the
force equilibrium equations as
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Multiplying the first two equations of motion by z and integrating them through thickness, the
moment equilibrium equations are obtained
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where ρ is the material density, and c is the equivalently viscous damping coefficient of the
material. P can be regarded as the external loading along the radial direction. External loadings
in other directions are not considered.
In addition, the constitutive relation for linearly elastic plane stress problems is

σxx =
E

1− µ2
(εxx +µεθθ) σθθ =

E

1− µ2
(εθθ +µεxx) σxθ =

E

2(1 + µ)
γxθ (2.11)

where E is Young’s modulus of the material, and µ is Poisson’s ratio.

3. Governing equations for infinitely long cylindrical shells

For infinitely long shells, changes of the quantities along the axial direction as well as the axial
displacement are regarded as zero. Additionally, viscous damping of the material is ignored.
Therefore, Eqs. (2.8)1 and (2.9)1 are naturally satisfied based on these two assumptions, whereas
Eqs. (2.8)2 and (2.8)3 are reduced to

∂Nθ
R∂θ
+
1

R

∂Mθ
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(3.1)

Substituting Eqs. (2.3) and (2.11) into Eq. (2.10) gives the expressions of Nθ and Mθ as

Nθ =
Eh

1− µ2
εθ,0 Mθ =

Eh3

12(1 − µ2)
kθ (3.2)

The middle surface strain εθ,0 and curvature change kθ based on Donnell’s theory are given in
Eqs. (2.4) and (2.5).
However, it is known that Donnell’s shell theory breaks down for non-shallow, long cylindrical

shells experiencing large deformations, which is revealed in the expression of curvature change
(Xue et al., 2013). According to Donnell’s theory, though some predominant nonlinear terms are
retained, the curvature changes are expressed by linear functions of w. For radial displacements
exceeding thickness of the shell, the change of curvature due to radius reduction can be obvious
and should be comprised of two parts. Firstly, the change of curvature could be caused by shell
radius variation, and can be rewritten as

k′θ =
1

R+ w
−
1

R
= −

w

R(R+ w)
(3.3)
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Secondly, bending deformation of the shell wall also contributes to the change pf curvature.
Considering curvatures of the middle surface resulted from bending in the deformed and un-
deformed configurations, and rewriting the expressions of the curvature in terms of the radial
displacement and its derivatives, leads to the change of curvature as

k′′θ =
−∂2w

R2∂θ2

[
1 +
( ∂w
R∂θ

)2]−3/2
(3.4)

Therefore, for the buckling problem in this paper, the change of curvature kθ defined in Eq. (2.5)
can be replaced by

k̃θ = k
′

θ + k
′′

θ = −
w

R(R+ w)
−
∂2w

R2∂θ2

[
1 +
( ∂w
R∂θ

)2]−3/2
(3.5)

By substituting the change of curvature in Eq. (3.5) and the middle surface strain εθ,0 in Eq.
(2.4) into Eqs. (3.1) and (3.2), the governing equations can be obtained in terms of middle surface
displacements. The ultimate expressions are omitted here for conciseness. These equations can
degenerate into those used in (Lindberg and Florence, 1987) by omitting the term (∂w/R∂θ)2.
And the reduced equation of motion in the circumferential direction is

∂2Mθ
R2∂θ2

−Nθ
( 1
R
+ kθL

)
− ρh
∂2w(x, θ, t)

∂t2
+ P = 0 (3.6)

where Nθ and Mθ are defined in Eqs. (3.2). εθ,0 in Eq. (3.2)1 is rewritten as w/R and kθ in Eq.
(3.1)2 is replaced by kθL = w/R

2 − ∂2w/R2∂θ2.
Moreover, in order to quantitatively describe the buckling degree of cylindrical shells at a

certain time during the buckling procedure, a new parameter is defined as

c0 =
1

πr20

2π∫

0

|r20 − r
2
1| dθ (3.7)

which means the ratio of area surrounded by the buckled shell shape and the corresponding
deformed circular line without buckling to the circular area. r1 in Eq. (3.7) denotes radius of
the buckled cylindrical shell, r0 is the corresponding radius without the occurrence of buckling.

4. Solution procedure and validation

4.1. Solution procedure

The finite difference method (FDM) is employed to solve the partial differential equations.
The scheme of central difference is applied to deal with the derivatives of displacements with
respect to coordinates as

(∂f
∂θ

)

m
=
fm+1 − fm−1
2∆θ

(∂2f
∂θ2

)

m
=
fm+1 − 2fm + fm−1

(∆θ)2

(∂3f
∂θ3

)

m
=
(fm+2 − fm−2)− 2(fm+1 − fm−1)

2(∆θ)3

(∂4f
∂θ4

)

m
=
(fm+2 − fm−2)− 4(fm+1 + fm−1) + 6fm

(∆θ)4

(4.1)

where f refers to displacement variations, ∆θ is the grid size, andm is the number of an element.
As for the partial derivative with respect to time, the following forward difference method is
used
(∂2f
∂t2

)n
=
1

∆t

[(∂f
∂t

)n+1
−
(∂f
∂t

)n]
(4.2)
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where ∆t is the time step, and n is the step number. The displacement can be obtained by
integrating Eq. (4.2) as

fn+1 = fn +∆t
(∂f
∂t

)n+1
(4.3)

Besides, the condition of periodicity of the cylindrical shell needs to be considered, namely

f(θ) = f(θ + 2π) (4.4)

4.2. Validation

In order to validate the presented shell-buckling model, a cylindrical shell with R = 48.5mm
and h = 1.5mm is taken as an example. The shell is subjected to a particularly non-uniform
impact pressure on the opposite side to the shell outer surface. This pressure easily causes a
relatively large radial displacement and strain and makes the effects of the added nonlinear terms
in the presented model significant. The initial displacement and velocity of the shell are zero.
The shell is made of steel. Without loss of generality, the shell is assumed to deform elastically.
The impact pressure profile is illustrated in Fig. 2, and can be mathematically expressed as

P (θ, t) =

{
P0e
−7t/t0 sin(4θ) θ ∈

[
0, π4

]
∧
[
π, 5π4

]

0 otherwise
(4.5)

in which P0 is the loading magnitude and t0 represents the total calculation time. The range
[0, π/4]∧[π, 5π/4] can be regarded as the loaded region of the shell. P0 = 400MPa and t0 = 100 µs
are adopted in this paper for numerical calculations.

Fig. 2. Pressure profile applied on the cylindrical shell

To show the accuracy and efficiency of the presented model, the radial displacements dis-
tributed along the circumferential direction at the instant of t = 100µs are displayed in Fig. 3.
It should be mentioned that the results from the FE model without particular assumptions
on the deformation mechanism are thought to be more accurate, whereas the assumptions are
made in both analytical models. The red curve is calculated by a commercial FEM software in a
three-dimensional configuration. The FEM model is processed by Abaqus/Explicit with 4-node
doubly curved general-purpose shell elements. 72000 elements are used in total. This model
adopts assumption (H2) in this work, but the effect of large deformation to the equilibrium po-
sition of the structure is considered in the FEM model. The other two curves are calculated by
the model presented in this paper and the model by Lindberg and Florence (1987), respectively.
It is clear that the results of the presented model agrees well with those of FEM, while the model
by Lindberg and Florence (1987), shown by the blue dash line, deviates from FEM apparently.
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Both the FEM and current models give an inward movement of middle points in the loaded
regions, while the movement of the middle points predicted by Lindberg and Florence (1987) is
outward. Thus, the presented model is more credible than that by Lindberg and Florence (1987).
Therefore, the presented model is able to deal with transient impact problems of thin-walled
cylindrical shells undergoing large displacements.

Fig. 3. Radial displacements at 100µs of different models

5. Shell buckling under randomly radial impact pressures

In this Section, the dynamic buckling behavior of the thin-walled cylindrical shell under radial
impact pressures randomly distributed in the circumferential direction is investigated. Explosive
devices, like shaped-charge weapons and oil well perforators, are usually subjected to impact
pressures that have significantly radial components over 100MPa, and metal shells always deform
plastically. Thus, a constitutive equation of plasticity should be used instead of the elastic model
in Eqs. (2.11). The widely used Johnson-Cook constitutive model without the temperature effect
is chosen in the following analysis and expressed as

σ = (A+Bεn)
(
1 + C ln

ε̇

ε̇0

)
(5.1)

where the reference strain rate ε̇0 is taken as 1.0 s
−1. A, B, n and C are coefficients depending on

the material. For simplicity, the tangent modulus, defined as Et = dσ/dε, is adopted to replace
Young’s modulus in Eqs. (2.11) and updated in every numerical time step to simulate the plastic
behavior using the constitutive equation.

Naturally, uniform impact pressures are prone to be influenced by randomly environmental
factors leading to nonuniformity of the pressures. Suppose that the impact pressure distributes
in the form of white noise as

P (θ, t) = P ′(t)

[
1 +

N∑

n=1

γn cos(nθ + ϕn)

]
(5.2)

in which N is the term number of the Fourier series. The parameters γn and ϕn denote the
disturbance magnitude and random phase angle, respectively. Subsequently, the effect of random
characteristic, material property and structural size on the dynamic buckling behavior of the
shell are investigated. The shell examples taken in the following analysis are listed in Table 1.

5.1. Effect of random characteristics of pressure

Three groups of pressure parameters are chosen to study the effect of random characteristics
on the buckling behavior of the shell. Figure 4 shows radial pressure distributions at the initial
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Table 1. Shell cases with different materials and sizes (Zhang et al., 2015)

Case No. 1 2 3 4 5

Material 4043 Steel 7075-T6 Al 7075-T6 Al 7075-T6 Al OFHC COPPER

ρ [kg/m3] 7830 2700 2700 2700 8960

E [GPa] 200 86 86 86 124

µ 0.29 0.3 0.3 0.3 0.34

R [mm] 40 40 40 40 40

h [mm] 1.5 1.5 2 2.5 1.5

A [MPa] 792 473 473 473 90

B [MPa] 510 210 210 210 292

n 0.26 0.38 0.38 0.38 0.31

C 0.014 0.033 0.033 0.033 0.025

Fig. 4. Initial pressure distributions: (a) γn = 0.005, random phase I; (b) γn = 0.005, random phase II;
(c) γn = 0.01, random phase II

time of three cases, in which P ′(t) = 300MPa and N = 100. The solid red line and dash blue
line represent the pressure with white noise along the circumferential direction and the uniform
pressure, respectively.
The parameters γn and ϕn vary from one case to another. The pressures in Figs. 4a and 4b

have the equal perturbation amplitude (γn = 0.005) but different phase angles. The perturbation
amplitude of the pressure in Fig. 4c is twice of that in Fig. 4b (γn = 0.01), but sharing the equal
phase angles. The pressures in Figs. 4a, 4b and 4c are simply called pressure (a), pressure (b)
and pressure (c), hereafter.

Fig. 5. Deformation evolution under: (a) pressure (a), (b) pressure (b), (c) pressure (c)

Under pressures shown in Fig. 4, deformation evolutions of cylindrical shell No. 1 in Table 1
are exhibited in Fig. 5. Taking Fig. 5a for instance, the wrinkled circles from the outside to
inside represent the deformed shape of the cylindrical shell at different times. It is clear that the
buckling degree is gradually magnified in a certain deformation profile with an increase of time,
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which is visualized in Figs. 5b and 5c as well. In addition, the mean deformation values over the
circumferential direction at an instant of 30µs are almost the same for the three figures. The
shell under pressures (a) and (b) shows the similar buckling degree, while the buckling in Fig. 5c
is much severer than the former two. It is worth mentioning that a continuous circle deformation
without buckling can be depicted for a uniform pressure P = P ′(t), which is omitted here for
conciseness.

In order to show the buckling degree of the cylindrical shell under different pressures more
clearly, Fig. 6 draws the evolution of c0 defined in Eq. (3.7). It is clear that c0 increases almost
monotonously for the three non-uniform pressures, which means that the buckling degree is
becoming stronger as the shell collapses. The values of c0 for pressures (a) and (b) show almost
no discrepancy, while c0 for pressure (c) is much higher. This is consistent with the pressure
characteristics, and the effectiveness of c0 to describe the buckling degree quantitatively is
justified. Furthermore, Fig. 6 tells us that the threshold value of c0 can be used as the tolerance
limit of shell buckling under non-uniform pressures.

Fig. 6. c0 versus time for different pressures

The crest number of the deformed cylindrical shell is sometimes concerned in the engineering.
According to Fig. 5, the crest number calculated for the three pressures is around 26. And further
analyses indicate that this number is dependent on the material property and the value of N in
Eq. (5.2).

In summary, the magnitude of uniform pressure P ′ can remarkably influence the mean de-
formation value of the cylindrical shell, and the disturbance magnitude γn is responsible for
the buckling degree. The random phase angle ϕn affects the distribution of pressure, thus it is
responsible for the exact deformation contour of the cylindrical shell. The loading itself as well
as perturbation do not always change for a particular engineering application. Hence, design-
ing a suitable structure and choosing a proper material are the conventional measures to avoid
buckling. This will be discussed in detail in the following sections.

5.2. Effect of material

In order to study the effect of materials on the dynamic buckling behavior, No. 1, 2 and 5
shells in Table 1 made of steel, aluminum and copper with the same size are taken into consid-
eration. The loading parameters are set to be P ′(t) = 300MPa, N = 100, and γn = 0.005. The
random phase angles are the same as those in Fig. 4b.

Figure 7a illustrates the radius of the cylindrical shell at t = 20µs, and Fig. 7b shows
the evolution of c0 over time. Under the same pressure condition, the radial displacement as
well as the radius perturbation magnitude of the aluminum shell is larger than those of steel
and copper shells. Among the three materials, the aluminum shell experiences the most violent
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buckling deformation, which is revealed by the value of c0 in Fig. 7b. At the time t = 20µs,
c0 of the aluminum shell is almost 10 times of that of steel and copper shells. The mean radius
of the steel shell (35.0mm) and copper shell (35.6mm) are close to each other at t = 20µs.
Besides, the buckling degrees of steel and copper shells show little difference. Such buckling of
the aluminum shell in this case is sometimes catastrophic and cannot be accepted. Then, when
the aluminum shell is used in such a situation, optimization of the size of the cylindrical shell
might be needed.

Fig. 7. (a) Radius of shells with different materials (t = 20µs), (b) c0 versus time for different
shell materials

5.3. Effect of shell thickness

In this Section, the effects of the shell thickness h on the buckling of cylindrical shells are
investigated. The pressure is retained the same as that in Section 5.2. Shells No. 2-4 in Table 1
are taken for calculation in this Section.

Fig. 8. (a) Radius of shells with different thickness, (b) c0 versus time for shells with different thickness

Figure 8a shows results for the radius of aluminum shells with different h. At the instant of
t = 20µs, the mean radial displacement increases with the reduction of h, leading to an decrease
in the radius. Meanwhile, the perturbation magnitude is relatively larger for a thinner cylindrical
shell. The buckling degree parameter c0, as expected, increases during the deformation process
regardless of the wall thickness, as revealed in Fig. 8b. And the value of c0 is higher when the
shell is thinner. The crest numbers of the three shells are 31, 23 and 18 for the wall thickness
of 1.5mm, 2mm and 2.5mm, respectively. The effect of thickness on the crest number has also
been confirmed by Lindberg and Florence (1987).
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6. Conclusion

By considering the nonlinear terms in the geometrical equation of the cylindrical shell and
maintaining the curvature variation due to a significant change of the shell radius, a buckling
model is proposed to study large deformation behavior of the shell under radial impact pressures
randomly distributing in the circumferential direction. Green’s strain tensor and the 1st P-K
stress tensor are employed to describe the large deformation, and a new parameter is introduced
to quantitatively judge the buckling degree of the shell. The following conclusions can be drawn
from the numerical analyses:

• The bucking model proposed in this paper can accurately describe the large deformation
behavior of the shell under non-uniform pressures.

• The buckling shape of the shell after deformation is contributed by the magnitude of the
uniform pressure, the magnitude of disturbance and the angle phase of random disturbance.
A more uniform pressure distribution produces a more circular shape after deformation.

• The buckling behavior of the shell is dependent on the material properties remarkably.
Aluminum shells buckle more easily compared with steel and copper ones under the same
pressure condition.

• The buckling degree can be effectively described by the defined parameter c0 which in-
creases with reduction of the shell wall thickness.
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